ESP Logo
 Elliott Sound Products Project 102 

Simple Pre-Regulator
Rod Elliott (ESP)

Share |

Introduction

There will be many times where it is desirable to use the P05 supply module from a higher voltage source. For example, if you want to add balanced inputs to a power amplifier, then you need a +/-15V supply, but the amp's supply voltage will be much too high for the regulator ICs.

This project is about as simple as they come, and is very cheap to build. It is designed for exactly this purpose - to reduce the amplifier supply voltage to a safe value for regulator ICs. It's worth noting that even though the LM317/337 (for example) have a rated voltage differential of 40V (the actual voltage across the IC), this is really the absolute maximum voltage that should ever be applied. Ideally, it will be kept much lower, and I recommend a maximum input voltage of around 25V. This reduces device power dissipation dramatically, and ensures that the ICs are well within ratings at all times.


Description

The circuit is shown in Figure 1 and it is very simple indeed. You will need to make a few simple calculations to determine the resistor value, but this is explained below. There is also an 'enhanced' version that provides even better ripple and noise rejection - see below.


Figure 1 - Basic Pre-Regulator Schematic

The circuit shown uses the 24V zener diodes (D1 and D2) to regulate the output voltage to a little under 24V. This is a perfectly safe input voltage for standard 3-terminal regulators, and using this circuit will provide even better regulation and supply noise rejection then normal. Using MJE3055 and 2955 transistors will allow for supply voltages up to 70V quite safely, but they will need to be mounted on a heatsink (with insulating washers). If you have a supply voltage of more than 56V, use transistors with a higher voltage rating.

The purpose of R5 is to isolate the main power amplifier ground from the supply, to prevent hum loops. The 10Ω resistor shown will be fine for the vast majority of applications, but may need to be changed. This is up to you to experiment with if necessary.


Note that if the current drawn from each supply is different, or if you only use a single unit (for a single supply voltage), R5 must be replaced with a direct connection (direct connect the GND connections without the resistor).

I suggest that R5 (if used) should be 1W. R2 and R4 may be 1/4W or 1/2W resistors, and 1W zeners are recommended.

The only calculation is to determine the value for R1 and R3. First, measure the power amp supply voltage (V1). The resistor value is calculated to provide a maximum zener current of 20mA, and this will ensure sufficient base current for the pass transistors for up to 100mA or so output current at ±15V. If the current drain of your preamp is greater than 100mA, you'll need to allow for more base current for the series-pass transistors. Be careful that you don't reduce the resistance value to the point where the zeners dissipate more than ~75% of their rated power.

V2 = V1 - Vzener   (Where V1 is amplifier supply voltage, and a Vzener is the zener voltage used)
R1 = R3 = V2 / Izener   (R1 and R3 values are in kΩ, Izener is zener current in milliamps)
P = V2² / R1   (P is power dissipation of R1 and R3 in mW)

Let's assume a supply voltage of ±56V for an example calculation ...

V1 = 56V
V2 = 56 - Vzener = 32V
R1 = R3 = 32 / 20 = 1.6k (use 1.5k)
P = 32² / 1.5 = 680mW = 0.68W (use 1W)

The dissipation in Q1 and Q2 may also be calculated, but you need to know the current drawn by the external circuits. For example, if the external circuitry draws 50mA, the transistor power dissipation is ...

P = V2 * Iout = 32 * 50 = 1600mW = 1.6W (it will need a small heatsink)

That's it for the basic version - it could hardly be simpler. Your regulator ICs are safe, and have around 30dB less input ripple to contend with. This means that if the main supply rails have a typical 6V of ripple and voltage variation due to varying current drain, this will be reduced to about 150mV total variation.


Add Some More Noise Rejection

While the basic circuit shown already has quite good noise rejection, some applications might need the maximum possible noise rejection. If this is the case, you can use the version shown below. The Value of R1 and R3 are calculated exactly as before, but R1A and R1B are half the value calculated, and the same for R3A/ R3B. Power dissipation in each resistor is half that calculated above for the 'basic' version.

In this case, you'd use either a 50V or 63V cap, depending on which is easier to get and cheaper. The resistors (R1A/B and R3A/B) would be either 680 or 820 ohms. One is a bit lower than the total calculated value and the other is a bit higher, but either will be fine. Increasing the capacitor value will give even better noise rejection, but the supply will take a lot longer to reach full voltage. With the 100uF cap and 680Ω resistors for R1A/B and R3A/B, it will take around 80ms before the output voltage stabilises.


Figure 2 - Enhanced Pre-Regulator Schematic

The capacitor voltage is determined by the following procedure ...

Vcap = Vzener + ( ( V1 - Vzener ) * 0.5 )

Using the same voltages from above, we get ...

Vcap = 24 + ( ( 56 - 24 ) * 0.5 )
Vcap = 24 + 16 = 40V

The added capacitor ensures that there is reduced ripple in the zener current, so the output voltage will also have lower ripple. You can expect an additional ripple voltage reduction of around 15dB with the values determined here (for a total of 45dB). Increasing the capacitor value will improve things further, but any regulator IC can easily handle the output of the circuit shown. As an added benefit, the output voltage is also relatively free of high-order harmonics, because the added capacitor acts as a low-pass filter.

C3 and C4 are optional. They do help, reducing high order harmonics further and reducing the overall ripple by about another 6dB. Whether you consider the added cost to be worthwhile is up to you - personally, I wouldn't bother because the caps will typically be mounted close to the zeners so will get hotter than normal and may have a reduced life. However, the AC ripple current is tiny so a bit of extra heat is probably not a major problem. As you would expect, the extra capacitance does increase the time before you have full output voltage.


Construction

Construction is non critical, and the resistors, zener and power transistors can be mounted on a tiny piece of Veroboard or similar. There are no stability issues, and you only need to make sure that the transistors have an adequate heatsink. Mounting to the chassis will normally be quite sufficient - even a steel chassis will keep the temperature well within limits. Remember that the transistor cases must be electrically isolated from the chassis, and Sil-Pads will be fine due to the low dissipation.

A suggestion for assembly is shown in Figure 2 (note that the 10Ω resistor from the main supply has not been shown). This construction method will be quite acceptable for most applications. The earth (GND) terminal point should ideally be isolated from the heatsink to prevent earth loops.


Figure 3 - Construction Suggestion

The above does not include the capacitors shown in Figure 2. If you want to add them, you'll either need a piece of tag-strip, Veroboard or other prototyping board to mount the extra parts.


Testing

Connect to a suitable power supply - remember that the supply earth (ground) must be connected! When powering up for the first time, use 100 ohm to 560 ohm "safety" resistors in series with each supply to limit the current if you have made a mistake in the wiring.

There is very little that can go wrong (other than wiring mistakes), so any fault you may find is easily rectified.


 

IndexProjects Index
ESP HomeMain Index

Copyright Notice.This article, including but not limited to all text and diagrams, is the intellectual property of Rod Elliott, and is Copyright © 2003. Reproduction or re-publication by any means whatsoever, whether electronic, mechanical or electro-mechanical, is strictly prohibited under International Copyright laws. The author (Rod Elliott) grants the reader the right to use this information for personal use only, and further allows that one (1) copy may be made for reference while constructing the project. Commercial use is prohibited without express written authorisation from Rod Elliott.
Page Created and Copyright © Rod Elliott 03 Jul 2003./ Updated Nov 2012 - added Figure 2 and text to suit.